ILK Dresden

Institut für Luft- und Kältetechnik Gemeinnützige Gesellschaft mbH

 Messsystem zur Bestimmung dreidimensionaler
 Strömungszustände

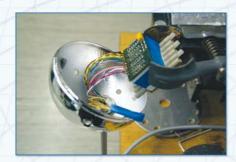
3D Luftgeschwindigkeitsmessung

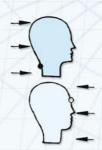
3D- Strömungssensorensor

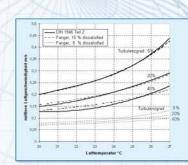
Anemometer

Der Thermische Strömungssensor auf Durchflussbasis ist ein Luftgeschwindigkeits-Anemometer zur Ermittlung des Betrages und der Richtung einer dreidimensionalen Strömung in einem gasförmigen Fluid. Bevorzugtes Einsatzgebiet ist die Bestimmung von kleinen Strömungsgeschwindigkeiten mit veränderlicher Trömungsrichtung und hohen Turbulenzgraden.

Anwendung


Mit dem neuen Thermischen Strömungssensor auf Durchflussbasis ist man erstmalig in der Lage, den Strömungsvektor in einem dreidimensionalen Strömungsfeld auf einfachste Weise und mit sehr hoher Genauigkeit zu bestimmen.


Bei turbulenten Strömungen wird der Turbulenzeinfluss auf das Messergebnis berücksichtigt.


Durch eine sehr geringe Ansprechzeit des Sensors ist die Bestimmung instationärer Strömungszustände möglich.

Für die Durchführung der Messaufgaben sind vom Anwender keine Spezialkenntnisse erforderlich. Das Messsystem ist einfach in der Handhabung und mechanisch robust. Die Bestimmung des Strömungsvektors erfolgt online, so dass der zeitliche Aufwand für eine Messung auf ein Minimum beschränkt ist.

Vorteile

hermische

- Großer Messbereich 0,01 ... 10 m/s
- Messung sehr kleiner Strömungsgeschwindigkeiten möglich
- Messung instationärer Strömungsvorgänge
- Bestimmung und Berücksichtigung des Turbulenzgrades
- Echtzeitmessung mit 0,1s Zeitauflösung für Strömungsgeschwindigkeit und –richtung
- Keine Sensorverstellung für die Bestimmung der Strömungsrichtung notwendig
- Keine Spezialkenntnisse für die Durchführung der Messaufgaben erforderlich
- Kalibrierung für unterschiedliche Geschwindigkeitsbereiche
- Vielfältige Möglichkeiten für Überwachungs-, Steuer- und Regelfunktionen

	~	ĸ
		3
	$\overline{}$,
	-	
	_	
	4.0	
	เก	
	-,	
	IM	
	LV	
	a	
	~	
	_	
	10	
	W	
	-	
	AL	
	W	
	_	
		ı.
	$\boldsymbol{\alpha}$	٩
	V	ø
-		
	O	
	2	
	202	
	01	
	ino	
	<i>l</i> ino	
•	VINC	
	Wind	
	Wind	
	סחושר	
	hwino	
	hwing	
	chwino	
	chwing	
	schwind	
	schwind	
	schwing	
	eschwind	
	ieschwind	
	yeschwind	
	deschwind	
	taeschwind	
	taeschwina	
	ttaeschwina	
	ıttaeschwina	
	uftgeschwing	
	uttaeschwina	
	uttaeschwind	
	Luftgeschwing	
	Luffgeschwing	
	Luffgeschwing	
) Luttaeschwind	
	O Luttaeschwind)
	D Luftgeschwing	
	3D Luftgeschwing	
	3D Luftgeschwing)

Fluid	Luft
Strömungsgeschwindigkeit	00,5 01, 02, 05, 010m/s
(Messbereiche)	
Strömungsrichtung	3D Raum
Messgenauigkeit	15%, abhängig vom
# x	Messbereich
Turbulenzgrad	Bestimmung ab 0%
Turbulenzgradkorrektur	Berücksichtigung des Turbulenz-
	einflusses
Grenzfrequenz	140 Hz
Aktualisierungsintervall	100 ms
Datenausgabe	analog/digital



Software mit individueller Anpassung an spezifische Anforderungen	Bestimmung der Thermischen Behaglichkeit
	Aufnahme 3-dimensionaler Strömungsfelder
	Überwachung, Steuerung und Regelung
Weitere Messstellen	z.B. Temperatur, Feuchte, Strahlung, Luftdruck
Sensorpositionierung	Laserpointer
Optionen	Transportkoffer, Stativ, Laptop, Drucker, Datenlogger, Steuer- und Regelbausteine

Zubehör

Bertolt-Brecht-Allee 20 D-01309 Dresden

Tel.: ++49 351 4081650 Fax: ++49 351 4081655 email: klima@ilkdresden.de

www.ilkdresden.de

